## **Journal of Integrative Nursing and Palliative Care (JINPC)**

Volume 5 | Page 89-99 Copyright CC BY NC SA 4.0 **Original Article** 

# Assessing Academic Goal Orientation in Chinese Nursing Students: Psychometric Evidence from SEM and IRT Models

Esteban Montoya1\*, Tatiana Soto1, Mauricio Peña1

<sup>1</sup>Research Group Management in Health and Nursing, Nursing Faculty, Universidad Nacional de Colombia, Carera 30 # 45-03 Edif 228, Bogotá, Colombia.

#### **Abstract**

This study aimed to translate the Academic Goals Orientation Questionnaire (AGOQ) into Chinese and evaluate its reliability and validity among Chinese nursing students using structural equation modeling (SEM) and item response theory (IRT). A total of 654 nursing students aged 17–26 years (mean =  $21.61 \pm 1.73$ ) participated in the study. Psychometric properties of the Chinese AGOQ were examined through a dual approach combining SEM and IRT analyses. The questionnaire demonstrated good internal consistency, with a Cronbach's  $\alpha$  of 0.895. Exploratory factor analysis (EFA) identified a four-factor structure accounting for 71.89% of the variance. Confirmatory factor analysis (CFA) supported a four-factor model with acceptable fit indices: CMIN/DF = 4.008, GFI = 0.932, AGFI = 0.905, CFI = 0.952, IFI = 0.952, and TLI = 0.941. IRT analysis, using the Graded Response Model (GRM) selected based on AIC and BIC comparisons, showed a monotonically increasing difficulty parameter and item discrimination values above 0.19, confirming the retention of 16 items. The Chinese version of the AGOQ exhibits strong psychometric properties and is a reliable and valid tool for assessing academic goal orientation among Chinese nursing students.

**Keywords:** Academic goal orientation, Nursing students, Reliability, Validity, Structural equation modeling, Item response theory

## Introduction

The national standards for undergraduate teaching quality in Chinese universities emphasize that nursing students should possess independent learning abilities, innovative skills, and the capacity to adapt to evolving healthcare needs [1]. Instructors are encouraged to promote student-centered teaching, enhancing active learning and fostering students' autonomy and creativity. In nursing education, learning goal orientation plays an important role in guiding teaching strategies. For instance, nursing course objectives are typically divided into three domains: knowledge, skills, and attitudes. Evaluating the achievement of these objectives allows instructors to monitor students' mastery, preferences, and provide timely professional guidance.

Academic goals are defined as the focus and direction of an individual's motivation toward academic success or failure [2, 3]. These goals are typically classified into four categories [4]: (i) learning or task goals, (ii) ego self-enhancement goals, (iii) ego self-frustration goals, and (iv) work avoidance goals. Traditionally, research has focused on learning and performance as the primary aspects of goal orientation [5]. Grounded in achievement motivation theory, goal orientation research seeks to identify different goal types among students. Earlier studies emphasized a distinction between task-oriented and self-oriented goals [6, 7], while later research also recognized avoidance-oriented behavior in learning contexts. Factor analyses have consistently shown task, self, and avoidance orientations as distinct factors.

**Corresponding author:** ?

Address: Research Group Management in Health and Nursing, Nursing Faculty, Universidad Nacional de Colombia, Carera 30 # 45-03 Edif 228, Bogotá, Colombia

E-mail: ⊠ esteban\_montoya85@hotmail.com

Received: 06 May 2024; Revised: 19 August 2024; Accepted:

21 August 2024; Published: 24 December 2024

How to Cite This Article: Montoya E, Soto T, Peña M. Assessing Academic Goal Orientation in Chinese Nursing Students: Psychometric Evidence from SEM and IRT Models. J Integr Nurs Palliat Care. 2024;5:89-99. https://doi.org/10.51847/3seF119zWg



In 1997, Norwegian researchers found that self-oriented goals could be divided into self-enhancement and self-frustration dimensions, which were weakly correlated and independent of task orientation, and both related to academic achievement [4]. Subsequent studies also confirmed that work avoidance is distinct from task and self-reinforcement orientations, demonstrating high reliability in measurement [7-9]. Consequently, academic goal orientation is currently conceptualized as four dimensions: ego self-frustration, ego self-enhancement, work avoidance, and learning or task goals.

Students with Type I goals (learning or task goals) focus on intrinsic motivation, seeking knowledge acquisition, skill development, and problem comprehension [10]. Type II and III goals (ego self-enhancement and ego self-frustration) are socially oriented, driven by external approval. Ego self-enhancement reflects the pursuit of favorable outcomes, whereas ego self-frustration involves defensive behaviors to avoid negative evaluations [4, 11]. Type IV goals (work avoidance) are characterized by minimizing effort and avoiding challenging tasks [12]. Previous studies have shown that students with lower academic performance are more likely to exhibit work avoidance behaviors compared to higher-performing peers [13, 14].

Despite the importance of academic goal orientation, no studies have investigated this in Chinese nursing students, likely due to a lack of validated measurement tools. The Academic Goals Orientation Questionnaire (AGOQ), originally developed in Norway [4], has been translated into Spanish and applied to nursing students [8]. Further validation in Colombia confirmed its reliability and validity in assessing nursing students' academic orientation [9]. Understanding nursing students' academic goal orientation can assist educators in tailoring instruction, selecting students for specific tasks, and adjusting course content.

Therefore, this study aims to translate the Spanish version of the AGOQ into Chinese and evaluate its psychometric properties among Chinese nursing students using structural equation modeling (SEM) and item response theory (IRT) multidimensional models.

#### Methods

## Design and sample

A cross-sectional, multi-stage sampling design was employed in this study. Data were collected from March to June 2023 among nursing students enrolled in medical schools in Jinzhou, Liaoning Province, China. The survey was conducted by trained nursing graduate students, who received standardized guidance on language and administration procedures (see Supplementary Material 1 for investigator training guidance). Participation was voluntary.

Inclusion criteria were: (1) full-time enrollment as a nursing student, (2) informed consent and voluntary participation, and (3) ability to comprehend and complete the survey. Exclusion criteria included: (1) students who had dropped out, and (2) students unwilling to participate [15, 16].

Following Kendall's principle [17], the sample size was determined as 10–20 times the number of variables. The questionnaire included 4 demographic variables and 16 AGOQ items, totaling 20 variables. Accounting for potential nonresponse or invalid questionnaires, a 20% buffer was added, yielding a minimum required sample size of 480. Ultimately, 654 valid responses were collected.

#### Instrument

The Academic Goals Orientation Questionnaire (AGOQ) consists of 16 items across four dimensions: (i) ego self-frustration goals (items 4, 7, 11, 14), (ii) ego self-enhancement goals (items 2, 6, 10, 3), (iii) work avoidance goals (items 3, 8, 12, 15), and (iv) learning or task goals (items 1, 5, 9, 16). Responses were rated on a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree), reflecting the participant's current state. The original scale demonstrated adequate reliability with Cronbach's alpha values >0.8 for all dimensions, and a total content validity index of 0.72 [4, 8].

#### Translation procedure

The AGOQ was translated following established guidelines [18-20]. Two multilingual experts first translated the questionnaire from Spanish to Chinese, after which two additional experts back-translated it into English. A panel of four nursing professionals and two psychologists reviewed the items for cultural and linguistic equivalence. A preliminary test was conducted with 30 nursing students, and revisions were made based on their feedback (see Supplementary Material 2 for the AGOQ items).

## Pre-survey

A pre-survey was conducted with 50 randomly selected nursing students. The total score range was 16-64 (mean:  $45.62 \pm 11.10$ ), and the average completion time was 3.86 minutes (range: 3-6 minutes). Descriptive results are provided in Supplementary Material 3.

Data collection



The formal survey was conducted between March and June 2023. Multi-stage sampling was applied: first, Jinzhou Medical University was randomly selected from six nursing colleges in Liaoning Province. Next, 50% of classes in each academic year were chosen, including both undergraduate and vocational nursing programs, resulting in 24 classes. Finally, 25–30 students per class were selected via cluster sampling. Questionnaires were distributed and collected on-site, with each student completing only one questionnaire. Out of 696 distributed surveys, 654 valid responses were obtained.

#### Statistical analysis

Data were analyzed using SPSS 25.0, AMOS 23.0, and R 4.3.0. Internal consistency of the AGOQ and its subscales was evaluated using Cronbach's alpha ( $\alpha$ ) [21–23].

Exploratory factor analysis (EFA) with principal component extraction and Varimax rotation was conducted to assess structural validity. The suitability of EFA was confirmed using the Kaiser-Meyer-Olkin (KMO) measure and Bartlett's test of sphericity [24–27]. Factor loadings of ≥0.40 were considered acceptable, and the cumulative variance explained by extracted factors was required to exceed 40% [28, 29].

Confirmatory factor analysis (CFA) was conducted to assess model fit using multiple indices: chi-square/degrees of freedom ( $\chi^2$ /df), goodness-of-fit index (GFI), adjusted goodness-of-fit index (AGFI), incremental fit index (IFI), Tucker-Lewis index (TLI), and comparative fit index (CFI) [30]. Fit criteria included GFI, AGFI, IFI, TLI, and CFI values >0.90 and  $\chi^2$ /df <5 [31–33].

Item response theory (IRT) models were applied to further evaluate the AGOQ. Both the Graded Response Model (GRM) and Generalized Partial Credit Model (GPCM) were compared using Akaike's information criterion (AIC) and Bayesian information criterion (BIC), with lower values indicating superior model fit [34–36]. In this study, GRM showed better fit (AIC = 27,145; BIC = 27,504) compared with GPCM (AIC = 27,259; BIC = 27,617) and was therefore selected for analysis. For each item, discrimination ( $\alpha$ ) and difficulty ( $\beta$ ) parameters were estimated. Item characteristic curves, item information curves, and total (scale) information curves were plotted, with larger areas under the curves indicating greater precision in measuring nursing students' academic goal orientations [37, 38].

#### Results

## Descriptive statistics

A total of 654 nursing students participated in the study. Their ages ranged from 17 to 26 years (mean =  $21.61 \pm 1.73$ ). The majority were female (n = 568, 86.85%), sophomores (n = 430, 65.75%), and from urban areas (n = 342, 52.29%) (**Table 1**).

**Table 2** presents AGOQ scores by sex and grade. Among the four dimensions, learning or task goals had the highest mean score  $(3.59 \pm 1.05)$ , whereas ego self-frustration goals had the lowest mean score  $(2.60 \pm 1.08)$ , indicating variation in the academic goal orientation among the participants.

**Table 1.** Frequency distribution of demographic characteristics (n = 654)

| Variables   | Groups    | N   | $\%/\overline{X} \pm S$ |
|-------------|-----------|-----|-------------------------|
| City        | Urban     | 342 | 52.29                   |
|             | Rural     | 253 | 38.69                   |
|             | Suburbs   | 59  | 9.02                    |
| Sex         | Male      | 86  | 13.15                   |
|             | Female    | 568 | 86.85                   |
| Age (years) | 17–26     |     | $21.61 \pm 1.73$        |
| Grade       | Freshman  | 297 | 45.41                   |
|             | Sophomore | 267 | 40.83                   |
|             | Junior    | 90  | 13.76                   |

Table 2. Descriptive results of the Academic Goals Orientation Questionnaire by sex and grade

| Dimensions |      | S    | ex   |      |       |       |      | Grade |      |      |      |       |
|------------|------|------|------|------|-------|-------|------|-------|------|------|------|-------|
| and items  | Ma   | le   | Fem  | ale  | D     | Fresh | man  | Sopho | more | Jun  | ior  | P     |
| and items  | mean | sd   | mean | sd   | Γ     | mean  | sd   | mean  | sd   | mean | sd   | ="    |
| F1         | 2.60 | 1.08 | 2.57 | 0.95 | 0.031 | 2.83  | 1.05 | 2.50  | 0.96 | 2.68 | 0.92 | 0.010 |
| Item4      | 2.59 | 1.14 | 2.67 | 1.07 | 0.393 | 2.93  | 1.20 | 2.58  | 1.07 | 2.76 | 1.03 | 0.020 |
| Item7      | 2.55 | 1.16 | 2.69 | 1.09 | 0.158 | 2.88  | 1.11 | 2.59  | 1.10 | 2.82 | 1.07 | 0.020 |
| Item11     | 2.63 | 1.19 | 2.51 | 1.08 | 0.071 | 2.79  | 1.10 | 2.45  | 1.09 | 2.61 | 1.08 | 0.030 |
| Item 14    | 2.64 | 1.25 | 2.42 | 1.03 | 0.001 | 2.71  | 1.19 | 2.38  | 1.05 | 2.54 | 1.02 | 0.030 |
| F2         | 3.00 | 0.92 | 3.08 | 0.82 | 0.716 | 3.07  | 0.84 | 3.10  | 0.84 | 2.98 | 0.80 | 0.291 |



3.15

0.97

3.16

0.99

3.17

1.03

3.03

0.96

0.292

92

0.013

and F4(Learning or task goals, items 1, 5, 9, 16)

#### Reliability

Item 2

3.03

1.20

**Table 3** presents the Cronbach's alpha coefficients for each item of the AGOQ. The overall standardized Cronbach's alpha for the Chinese version of the AGOO was 0.859, indicating satisfactory internal consistency and reliability. Additionally, the Cronbach's alpha values calculated after the deletion of individual items were all lower than the overall alpha, suggesting that no items needed to be removed or adjusted.

**Table 3.** Cropbach's coefficient alpha(n = 654,  $\alpha = 0.05$ ).

| Items  | Drop if | r dropped | r     |
|--------|---------|-----------|-------|
| Item4  | 0.850   | 0.503     | 0.586 |
| Item7  | 0.849   | 0.534     | 0.615 |
| Item11 | 0.852   | 0.470     | 0.558 |
| Item14 | 0.851   | 0.486     | 0.571 |
| Item2  | 0.847   | 0.568     | 0.638 |
| Item6  | 0.850   | 0.514     | 0.591 |
| Item10 | 0.847   | 0.562     | 0.634 |
| Item13 | 0.850   | 0.517     | 0.594 |
| Item3  | 0.854   | 0.435     | 0.530 |
| Item8  | 0.854   | 0.420     | 0.511 |
| Item12 | 0.855   | 0.412     | 0.502 |
| Item15 | 0.854   | 0.429     | 0.519 |
| Item1  | 0.851   | 0.498     | 0.573 |
| Item5  | 0.851   | 0.491     | 0.567 |
| Item9  | 0.851   | 0.485     | 0.560 |
| Item16 | 0.853   | 0.454     | 0.536 |

Drop if: Cronbach alpha when the item is removed; r dropped: item-total correlation without the item; r: item-total (point-biserial) correlation

#### Validity

Construct validity

Exploratory factor analysis

The suitability of the data for factor analysis was confirmed with a KMO value of 0.848 and a significant Bartlett's test of sphericity ( $\chi^2 = 6157.990$ , P < 0.001) [29]. Using exploratory factor analysis, four factors were extracted based on eigenvalues greater than 1 and confirmed by the scree plot (Figure 1) [39]. These factors collectively explained 71.892% of the total variance, with individual contributions of 20.26%, 19.79%, 17.10%, and 14.75%. The factor loadings and communalities for all 16 AGOQ items are presented in Table 5. Items clustered into four dimensions, consistent with the original instrument: (i) Ego self-frustration goal (items 4, 7, 11, 14), (ii) Ego selfenhancement goal (items 2, 6, 10, 3), (iii) Work avoidance goal (items 3, 8, 12, 15), and (iv) Learning or task goals (items 1, 5, 9, 16). Each item had a loading above 0.40 on its primary factor, and no item displayed significant cross-loading, supporting the structural integrity of the Chinese version of the AGOQ [40].

**Table 4.** Rotation Sums of Squared Loadings

Model of Variance (%)



Montoya et al., Assessing Academic Goal Orientation in Chinese Nursing Students: Psychometric Evidence from SEM and IRT Models

|                | Ego self-<br>frustration goal | Ego self-<br>enhancement goal | Work<br>avoidance goal | Learning goal dimension | the Total<br>Variance |
|----------------|-------------------------------|-------------------------------|------------------------|-------------------------|-----------------------|
| Initial model  | 17.182                        | 14.486                        | 11.148                 | 10.682                  | 53.498                |
| Modified model | 20.256                        | 19.788                        | 17.099                 | 14.748                  | 71.892                |

Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.848, Bartlett's Test of Sphericity, Approx. Chi-Square = 6157.990, P < 0.001

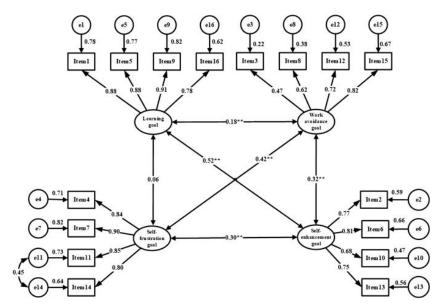
**Table 5.** Factor load and communalities of each item in AGOQ of 16 Items(n = 654)

| Items   | F1     | F2     | F3    | F4    | Communalities |
|---------|--------|--------|-------|-------|---------------|
| Item 7  | 0.898  | 0.016  | 0.200 | 0.043 | 0.848         |
| Item 4  | 0.887  | -0.006 | 0.216 | 0.087 | 0.841         |
| Item 11 | 0.859  | 0.016  | 0.276 | 0.012 | 0.814         |
| Item 14 | 0.843  | -0.029 | 0.118 | 0.178 | 0.757         |
| Item 6  | 0.066  | 0.899  | 0.088 | 0.157 | 0.845         |
| Item 13 | -0.059 | 0.880  | 0.126 | 0.135 | 0.813         |
| Item 2  | 0.055  | 0.858  | 0.076 | 0.164 | 0.772         |
| Item 10 | -0.067 | 0.834  | 0.166 | 0.175 | 0.758         |
| Item 9  | 0.230  | 0.023  | 0.835 | 0.063 | 0.755         |
| Item 5  | 0.185  | 0.163  | 0.790 | 0.011 | 0.685         |
| Item 16 | 0.186  | 0.099  | 0.783 | 0.193 | 0.695         |
| Item 1  | 0.176  | 0.178  | 0.702 | 0.200 | 0.596         |
| Item 15 | 0.011  | 0.165  | 0.045 | 0.842 | 0.739         |
| Item 12 | 0.058  | 0.147  | 0.033 | 0.791 | 0.652         |
| Item 8  | 0.068  | 0.130  | 0.120 | 0.721 | 0.555         |
| Item 3  | 0.158  | 0.124  | 0.239 | 0.531 | 0.380         |

F1(Self- frustration goal, items 4, 7, 11, 14), F2(Ego self- enhancement goal, items 2, 6, 10, 13), F3(Work avoidance goal, items 3, 8, 12, 15), and F4(Learning or task goals, items 1, 5, 9, 16)

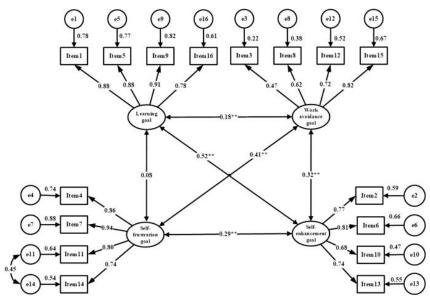


Figure 1. Scree plot


## Confirmatory factor analysis

The CFA results are summarized in **Table 6**. Initially, the original four-factor structure of the Chinese version of the AGOQ did not meet acceptable fit criteria (**Table 6**, **Figure 2**). To improve model fit, modification indices were applied, resulting in a revised four-factor model. The updated model demonstrated satisfactory fit across multiple indices:  $\chi^2/df = 4.008$ , GFI = 0.932, AGFI = 0.905, CFI = 0.952, IFI = 0.952, and TLI = 0.941 (**Table 6**, **Figure 3**) [33, 41–44].

Table 6. Evaluation of fitness of SEM model


|         | Table 0. Evaluation of fittless of SEW model |      |      |      |       |      |      |      |      |      |       |      |      |
|---------|----------------------------------------------|------|------|------|-------|------|------|------|------|------|-------|------|------|
| Mode    | CMIN                                         | NFI  | RFI  | IFI  | TLI   | CFI  | RM   | GFI  | AG   | PGF  | PRA   | PNF  | PCF  |
| l       | /DF                                          | NFI  | KFI  | IFI  | 1 1.1 | CFI  | R    | Gri  | FI   | I    | TIO   | I    | I    |
| Initial |                                              | 0.92 | 0.90 | 0.93 | 0.92  | 0.93 | 0.06 | 0.91 | 0.87 | 0.65 |       | 0.75 | 0.76 |
| mode    | 5.010                                        | 0.52 | 0.90 | 0.93 | 0.92  | 0.53 | 0.00 | 0.51 | 0.67 | 0.03 | 0.817 | 0.75 | 0.70 |
| 111000  | 2.010                                        | 1    | 3    | 6    | 1     | 6    | 1    | 2    | 8    | 7    | 0.017 | 2    | 4    |
| 1       |                                              |      |      |      |       |      |      |      |      |      |       |      |      |
| Modi    |                                              |      |      |      |       |      |      |      |      |      |       |      |      |
| fied    | 4.000                                        | 0.93 | 0.92 | 0.95 | 0.94  | 0.95 | 0.06 | 0.93 | 0.90 | 0.66 | 0.000 | 0.75 | 0.77 |
| mode    | 4.008                                        | 7    | 3    | 2    | 1     | 2    | 2    | 2    | 5    | 5    | 0.808 | 8    | 0    |
| 1       |                                              |      |      |      |       |      |      |      |      |      |       |      |      |





**Figure 2.** Standardized four-factor structural model of the Chinese version of the Academic goals orientation questionnaire (n = 654); F1(Self- frustration goal, items 4, 7, 11, 14), F2(Ego self- enhancement goal, items 2, 6, 10, 13), F3(Work avoidance goal, items 3, 8, 12, 15), and F4(Learning or task goals, items 1, 5, 9, 16)

94



**Figure 3.** Standardized four-factors structural model of the modified Chinese version of the Academic goals orientation questionnaire (n = 654); F1(Self- frustration goal, items 4, 7, 11, 14), F2(Ego self- enhancement goal, items 2, 6, 10, 13), F3(Work avoidance goal, items 3, 8, 12, 15), and F4(Learning goal dimension, items 1, 5, 9, 16)

#### Discriminant validity

In this study, a two-tailed independent samples t-test was conducted to compare the scores of the upper 50% and lower 50% groups. As presented in **Table 7**, significant differences were observed across all item scores between the two groups (P < 0.001).

**Table 7.** Discriminant validity analysis in AGOQ (n = 654)

| Item | Low-score group<br>mean ± <i>SD</i> | High-score group<br>mean ± SD | t       | P       |
|------|-------------------------------------|-------------------------------|---------|---------|
| F1   | $1.68 \pm 0.52$                     | $3.47 \pm 0.63$               | -39.708 | < 0.001 |

Montoya et al., Assessing Academic Goal Orientation in Chinese Nursing Students: Psychometric Evidence from SEM and IRT Models

| Item4   | $1.76 \pm 0.61$ | $3.55 \pm 0.60$ | -37.910 | < 0.001 |
|---------|-----------------|-----------------|---------|---------|
| Item7   | $1.77 \pm 0.62$ | $3.58 \pm 0.62$ | -37.452 | < 0.001 |
| Item11  | $1.61 \pm 0.49$ | $3.44 \pm 0.68$ | -39.671 | < 0.001 |
| Item 14 | $1.59 \pm 0.49$ | $3.31 \pm 0.74$ | -34.875 | < 0.001 |
| F2      | $2.32 \pm 0.69$ | $3.82 \pm 0.62$ | -29.411 | < 0.001 |
| Item 2  | $2.37 \pm 0.70$ | $3.90 \pm 0.61$ | -29.662 | < 0.001 |
| Item 6  | $2.38 \pm 0.70$ | $3.90 \pm 0.65$ | -28.743 | < 0.001 |
| Item 10 | $2.28 \pm 0.73$ | $3.79 \pm 0.66$ | -27.649 | < 0.001 |
| Item 13 | $2.24 \pm 0.70$ | $3.72 \pm 0.68$ | -27.301 | < 0.001 |
| F3      | $2.02 \pm 0.67$ | $3.66 \pm 0.67$ | -31.620 | < 0.001 |
| Item 3  | $2.02 \pm 0.68$ | $3.77 \pm 0.72$ | -31.981 | < 0.001 |
| Item 8  | $2.06 \pm 0.72$ | $3.67 \pm 0.69$ | -29.063 | < 0.001 |
| Item 12 | $1.99 \pm 0.64$ | $3.61 \pm 0.67$ | -31.747 | < 0.001 |
| Item 15 | $2.00 \pm 0.69$ | $3.61 \pm 0.67$ | -30.151 | < 0.001 |
| F4      | $3.03 \pm 0.83$ | $4.38 \pm 0.48$ | -25.579 | < 0.001 |
| Item 1  | $3.07 \pm 0.85$ | $4.38 \pm 0.49$ | -24.223 | < 0.001 |
| Item 5  | $3.01 \pm 0.83$ | $4.39 \pm 0.49$ | -25.909 | < 0.001 |
| Item 9  | $3.08 \pm 0.83$ | $4.40 \pm 0.49$ | -24.763 | < 0.001 |
| Item 16 | $2.96 \pm 0.86$ | $4.37 \pm 0.48$ | -25.829 | < 0.001 |
|         |                 |                 |         |         |

F1(Self- frustration goal, items 4, 7, 11, 14), F2(Ego self- enhancement goal, items 2, 6, 10, 13), F3(Work avoidance goal, items 3, 8, 12, 15), and F4(Learning or task goals, items 1, 5, 9, 16)

#### Item response theory models

To assess the AGOQ, item response theory (IRT) models were applied. Both the Graded Response Model (GRM) and the Generalized Partial Credit Model (GPCM) were compared using AIC and BIC values, where lower values indicate a better model fit. In this study, the AIC and BIC values for GPCM were 27,259 and 27,617, while for GRM they were 27,145 and 27,504, respectively. Based on these results, the GRM was selected due to its superior fit. As shown in **Table 8**, item discrimination parameters ranged from 0.237 to 3.689, and difficulty parameters ranged from -16.603 to 6.460.

**Table 8.** Estimates of discrimination and threshold parameters for the Scale under the graded response model with the Graded Response Model (n = 654,  $\alpha = 0.05$ )

|        | with the  | Graded Response | ,         | -0.03) | Discrimination        |  |  |  |  |
|--------|-----------|-----------------|-----------|--------|-----------------------|--|--|--|--|
| Items  |           | Threshold       |           |        |                       |  |  |  |  |
| Items  | $\beta_1$ | $\beta_2$       | $\beta_3$ | β4     | $\alpha_{\mathrm{i}}$ |  |  |  |  |
| Item4  | -1.073    | 0.034           | 0.868     | 2.290  | 3.300                 |  |  |  |  |
| Item7  | -0.998    | 0.008           | 0.816     | 2.110  | 3.689                 |  |  |  |  |
| Item11 | -0.891    | 0.167           | 0.951     | 2.230  | 3.267                 |  |  |  |  |
| Item14 | -0.857    | 0.285           | 1.030     | 2.430  | 3.157                 |  |  |  |  |
| Item2  | -3.447    | -1.224          | 0.830     | 3.300  | 0.913                 |  |  |  |  |
| Item6  | -4.349    | -1.716          | 1.076     | 3.910  | 0.691                 |  |  |  |  |
| Item10 | -2.739    | -0.993          | 0.997     | 3.080  | 0.991                 |  |  |  |  |
| Item13 | -3.258    | -1.043          | 1.268     | 3.560  | 0.867                 |  |  |  |  |
| Item3  | -2.870    | -0.539          | 1.347     | 3.440  | 0.780                 |  |  |  |  |
| Item8  | -2.651    | -0.667          | 1.542     | 3.760  | 0.823                 |  |  |  |  |
| Item12 | -2.688    | -0.387          | 1.534     | 3.750  | 0.881                 |  |  |  |  |
| Item15 | -2.386    | -0.377          | 1.492     | 3.560  | 0.948                 |  |  |  |  |
| Item1  | -14.584   | -9.753          | -2.692    | 6.460  | 0.237                 |  |  |  |  |
| Item5  | -14.214   | -8.639          | -2.109    | 6.240  | 0.253                 |  |  |  |  |
| Item9  | -16.603   | -9.918          | -2.790    | 6.260  | 0.241                 |  |  |  |  |
| Item16 | -14.155   | -6.674          | -1.432    | 5.450  | 0.294                 |  |  |  |  |

Figures 4 and 5 present the item characteristic curves and item information curves for the Chinese version of the AGOQ, respectively. The item characteristic curves indicated that the category thresholds for all items were in the expected order, confirming that each response category effectively positioned respondents on the scale. The item information curves exhibited multimodal distributions, with items 1, 5, 9, and 16 showing the steepest slopes and providing more information than the other items. Figure 6 illustrates the total scale information curve, which peaks between -1 and 1. This indicates that the AGOQ provides the most precise information for nursing students with ability levels in this range, demonstrating its strong capability to discriminate academic goal orientation among students.



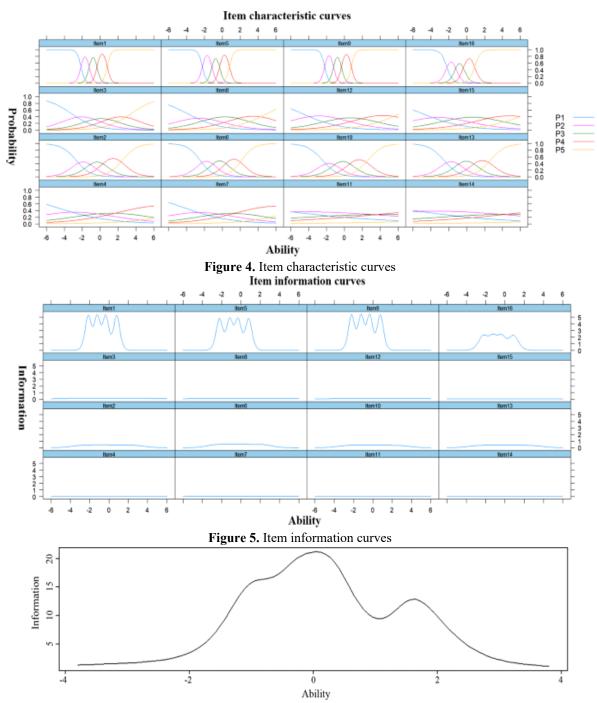



Figure 6. Total (scale) information curve

## Discussion

Previous nursing research has linked personal characteristics, such as childcare responsibilities or cultural differences, and academic factors, including study intensity, clinical practice, or lack of guidance, to outcomes like academic burnout, school dropout, or goal attainment [45–47]. However, few studies have explored academic goal orientation among nursing students in China.

To our knowledge, this is the first study to evaluate the Academic Goals Orientation Questionnaire (AGOQ) among Chinese nursing students using both structural equation modeling (SEM) and item response theory (IRT). Our findings demonstrate that the Chinese version of AGOQ possesses strong psychometric properties and is a reliable tool for assessing academic goal orientation. These results align with the original AGOQ developed by Skaalvik [4] and its Spanish adaptation verified by Navea Martín [8].

Earlier studies, such as Elliot [48], developed similar questionnaires for psychology students, and March [49] applied a comparable instrument to U.S. nursing students, although psychometric properties were not reported.



97

Other language versions used in nursing populations also reported satisfactory internal consistency ( $\alpha = 0.82-0.85$ ) [14, 50]. Given the prior validation of the Spanish version [8], this study used Skaalvik's AGOQ as the basis for the Chinese adaptation.

Exploratory factor analysis (EFA) identified four factors, consistent with the original scale, explaining 71.892% of the total variance (20.256%, 19.788%, 17.099%, and 14.748%, respectively). Confirmatory factor analysis (CFA) demonstrated acceptable model fit (CMIN/DF = 4.008; CFI = 0.952; IFI = 0.952; TLI = 0.941), with strong factor loadings and variance explained, corroborating the EFA results. Significant discriminant validity was observed between the high- and low-score groups (P < 0.001).

Few differences were found across dimensions and items. The learning/task goal dimension showed a significant gender difference, with females scoring higher, consistent with previous studies [50]. Freshmen scored higher in the work avoidance dimension, reflecting their initial adaptation challenges and a tendency to minimize effort, a phenomenon reminiscent of the "Buddhist-style college student" approach observed in China [51, 52].

IRT analysis further confirmed that all discrimination parameters exceeded 0.2, indicating AGOQ effectively distinguishes academic goal orientation among Chinese nursing students. Difficulty parameters increased monotonically, demonstrating appropriate item difficulty. The total information curve peaked between -1 and 1, suggesting the scale is most informative for students with moderate ability levels, indicating strong discriminatory capacity in this range.

#### Limitations

Several limitations should be acknowledged. First, the study's cross-sectional design limits causal inferences; longitudinal research is needed to confirm these findings. Second, the sample was drawn from a single nursing school in Liaoning Province, which may limit generalizability to other regions of China. Future studies should include more diverse populations to validate the AGOQ across different contexts. Despite these limitations, this study represents a pioneering effort in applying SEM and IRT to evaluate the psychometric properties of AGOQ in China.

#### Conclusion

The Chinese version of the AGOQ demonstrates good reliability and validity among nursing students in China. It is a suitable and effective tool for assessing academic goal orientation and can support educators in understanding and guiding students' learning motivations.

### **Abbreviations**

**AGFI:** Adjusted goodness of fit index

**AGOQ:** Academic goals orientation questionnaire

AIC: Akek's information criterion BIC: Bayesian information criterion CFA: Confirmatory factor analysis CFI: Comparative fit index

CMIN/DF: Chi-square/degree of freedom

*EFA:* Exploratory factor analysis *GFI:* Goodness of fit index

GPCM: Generalized Partial Credit Model

*GRM*: Graded Response Model *IFI*: Incremental fit index *IRT*: Item response theory *KMO*: Kaiser-Meyer-Olkin

**SEM:** Structural equation modeling

TLI: Tucker Lewis index

Acknowledgments: None.

Conflict of interest: None.

Financial support: None.

**Ethics statement:** None.



#### References

- 1. Jianqing L, Wenbo X, Jingjing L. Content analysis of national standards for undergraduate professional teaching quality in colleges and universities. J High Continuing Educ. 2018;31(5):7.
- 2. Sparfeldt JR, Brunnemann N, Wirthwein L, Buch SR, Schult J, Rost DH. General versus specific achievement goals: a re-examination. Learn Individual Differ- ences. 2015;43:170–7.
- 3. Lazcano LM, González-Chordá VM, Manrique-Abril FG, Cervera-Gasch Á, Mena-Tudela D, Andreu-Pejó L et al. Characteristics and deter- minants of the academic goals in nursing education: a cross-sectional study. Nurse Educ Today. 2022;114:105402.
- 4. Skaalvik EM. Self-enhancing and self-defeating ego orientation: relations with task and avoidance orientation, achievement, self-perceptions, and anxiety. J Educ Psychol. 1997;89(1):71–81.
- 5. León-Del-Barco B, Mendo-Lázaro S, Iglesias Gallego S, Polo-Del-Río MI, Iglesias Gallego D. Academic goals and parental control in primary school children. Int J Environ Res Public Health 2019;17(1).
- 6. Duda JL. Goals: A social cognitive approach to the study of achievement motivation in sport. In: 1993; 1993.
- 7. Nicholls JG. The competitive ethos and democratic education. Teachers Col- lege Record; 1989.
- 8. A. NM: A study on the academic goals of university nursing students. Psicolo- gia Educativa 2012;18:83–9.
- Manrique-Abril FG, Herrera-Amaya GM, Morales LMM, Ospina-Rojas AF, Cervera-Gasch A, Gonzalez-Chorda VM. Academic goals orientation question- naire for Colombian nursing students: validity and reliability study. Nurse Educ Today. 2020;84:104226.
- 10. Senko C, Hama H, Belmonte K. Achievement goals, study strategies, and achievement: a test of the learning agenda framework. Learn Individual Dif- ferences. 2013;24:1–10.
- 11. Zong X, Zhang L, Yao M. Parental involvement and Chinese elementary stu-dents' achievement goals: the moderating role of parenting style. Educational Stud. 2017;44(3):341–56.
- 12. Deemer ED, Carter AP, Lobrano MT. Extending the 2 × 2 achievement goal framework: development of a measure of scientific achievement goals. J Career Assess. 2010;18(4):376–92.
- 13. Barkur RR, Govindan S, Kamath A. Correlation between academic achieve- ment goal orientation and the performance of Malaysian students in an Indian medical school. Educ Health (Abingdon). 2013;26(2):98–102.
- 14. Palos R. Exploring the impact of achievement goals orientation and study engagement on nursing students' approaches to learning. Educational Stud. 2018;46(2):1–16.
- 15. Gao Z, Zhang L, Ma J, Sun H, Hu M, Wang M, et al. Reliability and validity of the Chinese version of the self-directed learning instrument in Chinese nursing students. BMC Nurs. 2023;22(1):51.
- 16. Zhang D, Yang L, Wang C, Yuan T, Wei H, Li J, et al. Reli- ability and validity of the Chinese version of the brief emotion and regulation beliefs scale in Chinese nursing students. BMC Nurs 2022;21(1).
- 17. Wolf EJ, Harrington KM, Clark SL, Miller MW. Sample size requirements for structural equation models: an evaluation of power, bias, and solution propri- ety. Educ Psychol Meas. 2013;76(6):913–34.
- 18. Beaton DE, Bombardier C, Guillemin F. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine. 2000;25(24):3186–91.
- 19. Tsang S, Royse CF, Terkawi AS. Guidelines for developing, translating, and vali- dating a questionnaire in perioperative and pain medicine. Saudi J Anaesth. 2017;11(Suppl 1):80–S89.
- 20. Khalaila R. Translation of questionnaires into Arabic in cross-cultural research: techniques and equivalence issues. J Transcult Nurs. 2013;24(4):363–70.
- 21. Taber KS. The use of Cronbach's alpha when developing and reporting research instruments in science education. Res Sci Educ 2017(1):1–24.
- 22. Boateng GO, Neilands TB, Frongillo EA, Melgar-Quiñonez HR, Young SL. Best Practices for Developing and Validating Scales for Health, Social, and Behavioral Research: A Primer. Front Public Health. 2018;6:149. doi: 10.3389/fpubh.2018.00149. PMID: 29942800; PMCID: PMC6004510.
- 23. Tavakol M, Dennick R. Making sense of Cronbach's alpha. Int J Med Educ. 2011;2:53–5.
- 24. Barnes H, Faraz Covelli A, Rubright JD. Development of the novice nurse practitioner role transition scale: an exploratory factor analysis. J Am Association Nurse Practitioners. 2022;34(1):79–88.
- 25. Streiner DL, Norman GR. Health measurement scales: A practical guide to their development and use. Journal of Epidemiology Community Health 2015;47(5):484.e481-484.e481.
- 26. Park D-I. Development and validation of a knowledge, attitudes and practices questionnaire on COVID-19 (KAP COVID-19). Int J Environ Res Public Health 2021;18(14).
- 27. Erci B, Yildirim H, Isik K. Psychometric evaluation of the patient perspective on care and rehabilitation scale in geriatric patients. Arch Gerontol Geriatr. 2019;81:84–90.
- 28. Huang F-F, Yang Q, Han XY, Zhang J-P, Lin T. Development and validation of a self-efficacy scale for postoperative rehabilitation management of Lung cancer patients. Psycho-oncology. 2017;26(8):1172–80.



- 29. Kun L. The application of SPSS in medical scientifc research. Beijing, China: People's Medical Publishing House; 2012.
- 30. LedyardRTucker CL. A reliability coefficient for maximum likelihood factor analysis. Psychometrika 1973(38–1).
- 31. McDonald RP, Ho M-HR. Principles and practice in reporting structural equation analyses. Psychol Methods. 2002;7(1):64–82.
- 32. Anderson J, Gerbing D. The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika. 1984;49(2):155–73.
- 33. Steiger JH. Structural model evaluation and modification: an interval estimation approach. Multivar Behav Res. 1990;25(2):173–80.
- 34. Buck HG, Harkness K, Ali MU, Carroll SL, Kryworuchko J, McGillion M. The caregiver contribution to heart failure self-care (CACHS): further psychomet- ric testing of a novel instrument. Res Nurs Health. 2017;40(2):165–76.
- 35. Huang P-H. Asymptotics of AIC, BIC, and RMSEA for model selection in struc- tural equation modeling. Psychometrika. 2017;82(2):407–26.
- 36. Akaike HT. A new look at the statistical model identification. Automatic Control IEEE Transactions on. 1974;19(6):716–23.
- 37. Jean-Pierre P, Shao C, Cheng Y, Wells KJ, Paskett E, Fiscella K. Patient satisfaction with navigator interpersonal relationship (PSN-I): item-level psychometrics using IRT analysis. Support Care Cancer. 2019;28(2):541–50.
- 38. Zhong S, Zhou Y, Zhumajiang W, Feng L, Gu J, Lin X, Hao Y. A psychometric evaluation of Chinese chronic hepatitis B virus infection-related stigma scale using classical test theory and item response theory. Front Psychol 2023;14.
- 39. Huang F, Ye Han X, Chen S-L, Guo YF, Wang A, Zhang Q. Psychometric testing of the Chinese simple version of the simulation learning effectiveness inventory: Classical theory test and item response theory. Front Psychol 2020;11.
- 40. Y L: Department IJCMR: the application of SPSS in data process of medical scientifc research. Chin Med Rec 2011.
- 41. Veilleux JC, Salomaa AC, Shaver JA, Zielinski MJ, Pollert GA. Multidimensional assessment of beliefs about emotion: development and validation of the emotion and regulation beliefs scale. Assessment. 2015;22(1):86–100.
- 42. Bollen KA. A new incremental fit index for general structural equation mod- els. Sociol Methods Res. 2014;17(3):303–16.
- 43. Li CH. Confirmatory factor analysis with ordinal data: comparing robust maxi- mum likelihood and diagonally weighted least squares. Behav Res Methods. 2016;48(3):936–49.
- 44. Bentler PM. Comparative fit indices in structural models. Psychol Bull. 1990;28(2):97–104.
- 45. Valero-Chilleron MJ, Gonzalez-Chorda VM, Lopez-Pena N, Cervera-Gasch A, Suarez-Alcazar MP, Mena-Tudela D. Burnout syndrome in nursing students: an observational study. Nurse Educ Today. 2019;76:38–43.
- 46. Mooring QE. Recruitment, advising, and retention programs challenges and solutions to the international problem of poor nursing student retention: a narrative literature review. Nurse Educ Today. 2016;40:204–8.
- 47. Chan ZCY, Chan HY, Chow HCJ, Choy SN, Ng KY, Wong KY, et al. Academic advising in undergraduate education: a systematic review. Nurse Educ Today. 2019;75:58–74.
- 48. Elliot AJ, Mcgregor HA. A 2\*2 achievement goal framework. J Personal Soc Psychol. 2001;80(3):501–19.
- 49. March AL, Robinson C. Assessment of high-stakes testing, hopeful thinking, and goal orientation among baccalaureate nursing students. Int J Nurs Educ Scholarsh. 2015;12:123–9.
- 50. Filiz N, Erol F, Başaran H, Tanrikulu F, Dikmen Y. Investigation of achieve- ment orientation of nursing and midwifery students. Curr Health Sci J. 2018;44(2):176–80.
- 51. Seifert TL, O'Keefe BA. The relationship of work avoidance and learning goals to perceived competence, externality and meaning. Br J Educ Psychol. 2001;71(Pt 1):81–92.
- 52. Xu J. Analysis of the phenomenon of buddhist-style youth from the perspective of social acceleration theory. Adv Philos. 2020;9(4):6.